Liraglutide pancreatitis: The ABCD nationwide liraglutide audit
REJ Ryder, KY Thong, AD Blann, SM Phillips, ND Barwell, CJG Kelly, C Semple, ML Cull, P Sen Gupta and for the ABCD nationwide liraglutide audit contributors
British Journal of Diabetes & Vascular Disease published online 6 September 2013 DOI: 10.1177/1474651413502685

The online version of this article can be found at:
http://dvd.sagepub.com/content/early/2013/09/20/1474651413502685

Published by:
$SAGE
http://www.sagepublications.com

Additional services and information for The British Journal of Diabetes & Vascular Disease can be found at:

Email Alerts: http://dvd.sagepub.com/cgi/alerts

Subscriptions: http://dvd.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Sep 20, 2013

OnlineFirst Version of Record - Sep 12, 2013

OnlineFirst Version of Record - Sep 6, 2013

What is This?
Liraglutide pancreatitis: The ABCD nationwide liraglutide audit

REJ Ryder,1 KY Thong,2 AD Blann,1 SM Phillips,2 ND Barwell,4 CJG Kelly,4 C Semple,5 ML Cull1 and P Sen Gupta1,6 for the ABCD nationwide liraglutide audit contributors

Abstract

Introduction: There is concern that glucagon-like peptide-1 (GLP1) receptor agonists may be associated with acute pancreatitis. The data from the ABCD nationwide liraglutide audit (November 2009–June 2013; 6010 patients) provide an opportunity to assess the extent of the problem in routine clinical practice in the UK.

Methods: At every patient visit, audit-contributors were invited to submit, via an electronic form, clinical data collected as part of routine clinical practice, including data on possible side effects of treatment. Cases of ‘possible pancreatitis’ were identified and we contacted the centres concerned to obtain full details.

Results: To date, the audit has monitored 3720 years of exposure to liraglutide. There were four cases of possible pancreatitis documented from the 6010 patients on liraglutide: three patients had likely causes of pancreatitis identified and one patient had no aetiological cause. This sole case represents an incidence of 0.027/100 patient-years of exposure to liraglutide.

Conclusion: In cases of acute pancreatitis of a patient on liraglutide, if another cause can be found (usually gall stones associated with obesity), the drug is not be necessarily culpable. People with Type 2 diabetes are at greater risk of acute pancreatitis (hazard ratio between 1.5 and 2.8). Thus, the possibility of liraglutide-associated pancreatitis in ‘real-world’ clinical practice (0.027/100 patient years) represents a very small risk.

Keywords
Diabetes; exenatide; gall stones; glucagon-like peptide-1; GLP-1 receptor agonist; incretins; liraglutide; obesity; pancreatitis; risk; side effects; Type 2 diabetes

Introduction

Recent articles in the British Medical Journal1–6 and elsewhere7,8 have resurfaced the issue of a possible association between acute pancreatitis and treatment with GLP1-based therapies in patients with Type 2 diabetes.

In 2008 the UK’s diabetologists, via their association (Association of British Clinical Diabetologists (ABCD)), launched an initiative to evaluate new diabetes treatments with regard to their safety and efficacy in ‘real-world’ clinical practice, via an audit programme. Since 2009, the ABCD nationwide liraglutide audit has been on-going, and much is being learned;9 data from this audit provide an ideal opportunity to assess the extent to which liraglutide may be associated with acute pancreatitis in UK patients.

Methods

In November 2009, ABCD invited diabetes physicians across the UK to submit data on their diabetes patients whom had been treated with liraglutide therapy.
• Baseline data on demographics (age, gender and ethnicity);
• Disease information (duration of diabetes);
• Baseline and follow-up data on medications (diabetes and obesity drug names and doses);
• Key measurements (height, weight and blood pressure); and
• Blood tests (HbA1c, lipids, alanine aminotransferase and creatinine).

The data were provided as permitted by availability in routine clinical practice, without any extra tests being requested specifically for the audit. For the follow-up visit records, audit contributors were also prompted to provide information on adverse events, either as a reason for stopping liraglutide or as a free text comment. The data submission remains on-going.

On 1 July 2013, the data was interrogated with an electronic search, using the term ‘pan’ to capture all entries of ’pancreatitis’. We excluded cases where the ‘pan’ referred to other issues or conditions, as were cases in which pancreatitis or pancreas-related issues were mentioned at baseline only (prior to liraglutide commencing as therapy). We followed up all remaining reports of pancreatitis occurring in liraglutide-treated patients in the audit, by contacting the reporting centre. The centres involved were asked to study the patient’s hospital notes and investigation reports in detail, to obtain as much information as possible about these pancreatitis cases, and to supply this information to ABCD whilst maintaining patient confidentiality.

To provide a comparison between ABCD audit patients and those in the Phase 3 clinical trials, the baseline characteristics of the patients in those trials were determined from the trial reports.10–15

Results

By 1 July 2013, the ongoing liraglutide audit had collected data on 6010 patients from 111 centres. Table 1 shows the baseline characteristics of patients treated with liraglutide in the UK, whom were reported in the audit.

There were 17 cases of ‘pan’ found in the free-text search; we excluded 11 of these cases, from further evaluation, for the following reasons: previous pancreatitis reported at baseline, prior to commencement of liraglutide, with no follow-up issues of concern (8 cases); panic attacks (2 cases); and panhypopituitarism in a treated acromegaly patient (1 case). Of the remaining six cases identified by ‘pan’, it turned out that they were actually four patients, as two of the four had the same episode of ‘pancreatitis’ mentioned twice in their electronic record. Therefore, four cases of possible acute pancreatitis were further evaluated.

After local clinicians at the centres had checked the hospital records and investigation reports, three cases were found to have likely alternative explanations (gall bladder disease, gall stone pancreatitis prior to liraglutide, acute abdominal illness of uncertain cause). Table 2 has a summary description of these ‘pancreatitis cases’.

To date, this on-going audit has monitored 3720 years of exposure to liraglutide. There was only one case of acute pancreatitis, in whom we identified no other causes for pancreatitis. This case might therefore be related to liraglutide therapy, representing an incidence of 0.027/100 patient-years of exposure to liraglutide. The total incidence of pancreatitis (ie: n = 4, including the three cases with another cause or who probably did not have pancreatitis) was 0.108/100 patient-years of exposure to liraglutide.

Combining the data from the Phase 3 clinical trials of liraglutide10–15 showed that patients had a mean HbA1c of 8.5% and BMI of 31 kg/m², respectively. By contrast, our cohort of patients had a markedly higher baseline HbA1c and they were considerably heavier (mean ± SD: HbA1c 9.4 ± 1.7%; BMI 38.8 ± 7.2 kg/m²) (Table 1).

Discussion

This analysis of the ABCD nationwide liraglutide audit data evaluated the cases of pancreatitis reported in UK patients on liraglutide therapy. In the same way as for the ABCD nationwide exenatide audit (2007–2009),16 a strength of this audit was the ability to follow up, in detail, on reported cases of pancreatitis to establish the history, investigation results, disease severity and likely cause. By investigating the ‘possible pancreatitis’ cases further with the local clinicians, we were able to accurately attribute the most
likely underlying cause in each case. In doing so, we found alternative causes for the 'pancreatitis' in three out of four patients (Table 2) whom, in a less rigorous audit, might have been taken as true liraglutide-induced pancreatitis cases.

Limitations of this liraglutide audit included the possibility of reporting bias. Given the notoriety of GLP-1-related therapies as possible causes of pancreatitis, we find it hard to imagine contributors to the audit would not report possible cases. More likely as an issue is the need for the contributors to have knowledge of all pancreatitis episodes, in order to be able to report them. As the data were collected in routine clinical practice by busy clinical staff, it may well be that some cases were not reported, because of a lack of awareness that such an event had occurred. Furthermore, there was no specific question during the follow-up questionnaires as to whether the patient had an episode of pancreatitis while on liraglutide. Instead, the free-text comment allowed for any adverse events to be reported, which is important to the integrity of the adverse events data in general; as otherwise, we may miss other important adverse events. Nevertheless, we believe that the occurrence of pancreatitis would have, in most cases, led to discontinuation of liraglutide and that would have alerted clinical staff looking for a cause for cessation of the therapy.

People with diabetes are more likely to develop acute pancreatitis than people without diabetes: reports are of hazard ratios of 1.5, 2.1 and 2.8. Gallstones or alcohol are the most frequent causes of acute pancreatitis, with other causes including drugs, infectious agents, hypertriglyceridemia, trauma and pancreatic ductal obstruction. Approximately 10% to 25% of cases of acute pancreatitis have no readily identifiable cause and are termed 'idiopathic'. Many of these cases are eventually shown to be caused by microlithiasis. When considering pancreatic cases without any obvious alternative cause, it is worthwhile to remember that because 'idiopathic' acute pancreatitis is so common, liraglutide may not necessarily be the aetiological factor, even if no other cause is found.

The ABCD exenatide and liraglutide (Table 2) audits showed that in most cases of pancreatitis in patients taking liraglutide or exenatide, another cause for the pancreatitis can be found, such that these drugs do not need to be implicated. The patients in the ABCD liraglutide audit were considerably heavier and had considerably worse glycaemic control (Table 1) than the patients in the Phase 3 clinical trials with these agents. The same was true for the exenatide audit. Obesity is associated with gall bladder disease and hypertriglyceridaemia, both of which are risk factors for acute pancreatitis. Hence, not surprisingly, most of the reported cases of pancreatitis in both audits had causes related to obesity, especially gall bladder disease.

It is important that when alternative causes, such as gall stones, are identified as the causative agent, a balanced view is taken. For instance, it may not be necessary in all cases to stop liraglutide treatment long-term and implicate it as the root cause, if another more likely reason is present. If the actual root cause of the acute pancreatitis is not identified, there will be a missed opportunity to provide targeted treatment to expedite
In most cases of pancreatitis in patients taking liraglutide, the incidence was only 0.108 cases/100 patient-years of exposure. Taking all the reported cases, including the ones unlikely to be related to liraglutide, the incidence was only 0.108 cases/100 patient-years of exposure. Combining the data from the clinical trials of liraglutide, there were 7043 patients with 5005.7 years of exposure to liraglutide. This is low and within the predicted range for rates of acute pancreatitis in patients with Type 2 diabetes (0.05 – 0.56 cases/100 patient-years of exposure).27,30 We also show, for comparative purposes, the results from the ABCD Nationwide Exenatide Audit.21 The ‘all cases’ rates are within the predicted range for rates of acute pancreatitis in patients with Type 2 diabetes (0.05 – 0.56 cases/100 patient-years of exposure).27,30 Cases of otherwise unexplained acute pancreatitis in patients on liraglutide (or exenatide) might be related to the liraglutide (or the exenatide), or they might be simply ‘idiopathic’ acute pancreatitis cases, such cases being common.20-22

The rates of acute pancreatitis found in the ABCD nationwide liraglutide audit are similar to those found in the ABCD nationwide exenatide audit (2007 – 2009) audit.32 (Table 3). It has been well argued that the benefits of GLP-1-related therapies far outweigh the potential risks.33 It is clear that clinicians in the UK who are treating patients with exenatide and liraglutide, see considerable benefits in terms of reductions in weight and HbA1c; and reduction in other therapies, including insulin.23,33,34 This audit is in keeping with the everyday experience of clinicians who treat ‘real-world’ Type 2 diabetes patients on a daily basis and who see benefits with these agents. Those same clinicians hardly ever find their exenatide and liraglutide-treated patients experiencing acute pancreatitis, and when they do,
there is usually another cause: in particular, gall stones. We await the long-term cardiovascular outcome study with liraglutide,35 to understand more fully the true balance of risks and benefits in this agent.

Acknowledgements
We thank the many ABCD Nationwide Liraglutide Audit contributors. Many are named in the Appendix available online.

Declaration of conflicting interest
REJR received speaker fees, consultancy fees and/or educational sponsorships from a number of companies, including Bristol Myers Squibb/Astra Zeneca Alliance, Eli Lilly, GlaxoSmithKline, Novo Nordisk, Sanofi-Aventis and Takeda.
KYT received speaker fees from Novo Nordisk, and educational sponsorships from Novo Nordisk, Eli Lilly, Sanofi-Aventis and Takeda.
ADB received speaker fees, consultancy fees and/or educational sponsorship from Bayer, Boehringer Ingelheim and Sanofi-Aventis.
SMP received speaker fees from Astra Zeneca and educational sponsorship from Eli Lilly.
NDB received speaker fees and/or educational sponsorship from Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Merck Sharp Dohme, Novo Nordisk and Pfizer.
CJGK received speaker fees, consultancy fees and/or educational sponsorship from a number of companies, including Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Janssen, Novo Nordisk and Takeda.
PSG received speaker fees from Eli Lilly and educational sponsorship from Bristol Myers Squibb, Eli Lilly and Novo Nordisk.
CS and MLC declare they have no conflicts.

Funding
The ABCD nationwide exenatide and liraglutide audit programme received unrestricted grants from Eli Lilly and Novo Nordisk. These audits were independently initiated and performed by ABCD. The authors remained independent in the analysis and writing of this report.

References
2. Gale EAM. Incretin therapy; Should adverse consequences have been anticipated? Brit Med J 2013; 346: f3617.
13. Marre M, Shaw J, Brändle M et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diab Med 2009; 26: 268-278.

29. Ryder REJ, Blann A, Thong KY. Acute pancreatitis and glucagon like peptide 1-based therapies – caution over what to conclude from observational studies. 10 June 2013: online comment on Singh et al. (reference 8 above).

Appendix: ABCD nationwide liraglutide audit contributors

The following are those whom we know about.

ABCD nationwide liraglutide audit – initial setup, maintenance and nationwide analysis: Ryder REJ, Walton C, Thong KY, Sen Gupta P, Cull ML, Mills AP.

Statistician: Blann A.

Addenbrookes Hospital: Adler A, Bejinariu E, Park A, Parker V, Sarkar A, Simmons D.

BaNES NHS primary care trust: Catchpole S, Wylie S.

Barnsley Hospital NHS Foundation Trust: Uchegbu E, Basildon University Hospital.

Mulcay M. Bassetlaw Hospital: Kela R, Woods H.

Bearwood Medical Practice: Alderman J, Newhouse R, Purcell J.

Belfast City Hospital: Henry RW, McMullan P, Nugent A.

Bensham General Hospital: Narayanan K R.

Birmingham Community Healthcare NHS Trust: Cunningham B, Haughton K, Muralidhara K, Shahid S, Thomas A.

Bradford Royal Infirmary: González S, Brighten General Hospital.

Bristol General Hospital: Croxson S, Bristol Royal Infirmary.

Brighton Sussex University Hospital NHS Trust: Evans C, Jones A M, Kotonya C, Phillips L, Powell P, Saunders H.

Cape Hill Medical Centre: Child D, Chittnis J, Gardner G, Maan P, Merali A.

Causeway Hospital, Coleraine: Davidson E, Diong K L, Glass M, Hutchinson K, Kassim S B, McKee M, Ryan M F, Spiers K, Woodend J.

Cheltenham General Hospital: Evans A, Gray H, Lock-Pullan P, Phillips S.

Conquest Hospital: Batson D, Castro E, Combes A, Dashora E, Edwards V, Govindan R, Kumar S, Morris R.

Cumberland Infirmary Centre: Graham S, Higgins N, Mason J, Redgate J, Routledge A, Simpson E, Vithian K.

Darlington Memorial Hospital: Evans A, Gray H, Lock-Pullan P, Phillips S.

Derriford Hospital: English P, Fox T, Tambal A, Wotton F.

Dewsbury District Hospital: J Bissell.

Downe Hospital Northern Ireland: Whitehead H.

East Surrey Hospital: Chinnasamy E, Prajapati C, Sennik D.

Eastbourne District General: O’Donnell H, ELRCT: McKane C, Procter W, Sarsfield J, Wilkinson R.

Friargate Hospital: Kamaruddin M S, Leek C, Owen K, Stanamore M.

Friargate Park Hospital: Beebejaun M, Tringham J.

Furness General Hospital: Banerjee M, Obale B, Pearce D, Tong M.

George Eliot Hospital: Patel V.

Gloucestershire Royal Hospital: Gan K S, Mahajan T, Saunders S.