BACKGROUND
Insulin glargine 300 units/mL (Gla-300) delivers the same dose of insulin as insulin glargine 100 units/mL (Gla-100), with the same active metabolite, but in one-third of the volume.1
Gla-300 has a prolonged, more constant, pharmacokinetic/pharmacodynamic (PK/PD) profile than Gla-100.2,3
The EDITION programme compared the efficacy and safety of Gla-300 with that of Gla-100 in patients with type 2 diabetes (T2D) and using basal insulin plus oral antidiabetes drugs (OADs) (EDITION 1) or basal insulin plus oral antidiabetes drugs (OADs) (EDITION 2).4
In the EDITION 1 clinical trial, the efficacy of Gla-300 in reducing glycated haemoglobin A1c (A1C) levels has been shown to be comparable with that of Gla-100, but with similar or less weight gain, and reduced risk of confirmed and/or severe hypoglycaemia.5
In the EDITION 1 and 2 trials, patients randomized to Gla-300 used 10% more basal insulin than patients randomized to Gla-100.1,6
It has been suggested that this may be related to the slightly lower bioavailability of Gla-300 that results from its longer residence time in the subcutaneous space, potentially leading to increased enzymeric inactivation.1,6
Real-world data describing the dosing differences between Gla-100 and Gla-300 in patients with T2D are lacking.

OBJECTIVE
To compare insulin dose changes in a real-world setting in adult patients with T2D using prior Gla-100, and who either switched to Gla-100 or remained on Gla-100.

METHODS

Study Design and Data Source
This was a retrospective claims study using data from the Clinformatics™ Data Mart (CMD) database for the period 1 January 2014 to 31 March 2016 inclusive.
– The database includes administrative health claims for members of a large national managed-care company affiliated with Optum™.
– Administrative claims submitted for payment by providers and pharmacies are verified, adjudicated adjusted, and de-identified prior to inclusion in the CMD.
– The CMD also includes results for outpatient laboratory tests processed by large national lab vendors under contract with the managed-care organization; data are included only for those with both medical and prescription-drug coverage to enable users to evaluate the complete healthcare experience.

Patient Selection
– Eligible patients were adults (≥ 18 years of age) with a diagnosis of T2D using prior Gla-100, and who:
 – no use of other basal insulin at baseline
 – continuous enrolment during 6 months’ baseline and 6 months’ follow-up
 – ≥ 2 Gla-100 claims in the 6-month baseline period
 – either Gla-100 or Gla-300 claim during the identification period (1 April to 31 December 2015).

Definition and Measurement of Persistence
– The index date for switching from Gla-100 to Gla-300 was the date of the first Gla-300 claim; for patients remaining on Gla-100, the index date was the date of a random claim between the third and the last claim during the identification period (Figure 2).
– Patients were defined as “persistent” if they remained on the insulin index (Gla-100 or Gla-300) during the follow-up period and without discontinuation after the index date.
– Index insulin was considered discontinued if the prescription was not refilled within the expected period of median coverage (the 90th percentile of the time, stratified by the metric supplied between the first and second fills for patients with at least 2 refills).

Study Outcomes
– Outcomes measured during the follow-up period were:
 – daily average consumption (DACON) of basal insulin, calculated as the total number of study-drug units dispensed from initiation to the last refill during follow-up, divided by the number of days in the period (6-12 months)
 – average percent change in DACON per patient from baseline to follow-up
 – mean A1C reduction from baseline to follow-up (3-6 months).

Statistical Analyses
– Patients switching to Gla-300 were matched to those continuing Gla-100 via propensity score matching (PSM) at a ratio of 1:1 up to 3.
– PSM was based on the baseline characteristics of the patients, which included:
 – demographics – age, gender, race, insurance, payer, region
 – clinical characteristics – baseline A1C, baseline antidiabetes-drug combination (OADs), and diabetic complications (Charlson Comorbidity Index score), DACON, baseline hypoglycaemia incidence, healthcare utilization, cost of baseline.

RESULTS
A total of 34,267 patients with T2D were eligible for this study (Figure 2).
Patient baseline demographics and clinical characteristics are shown in Table 1.
PSM yielded 443 and 1,241 patients using Gla-300 and Gla-100, respectively, with matched baseline characteristics.

Within the matched sample, Gla-100 and Gla-300 cohorts had comparable DACON at baseline (56.5 U/day vs 53.6 U/day, respectively; P = 0.272) (Table 1, Figure 3A) and follow-up (55.8 U/day vs 55.0 U/day, respectively; P = 0.097) (Figure 3B), corresponding to comparable percent changes in DACON (13.6% vs 12.6%, respectively; P = 0.753) (Figure 3C).
In persistent patients, DACON increased from baseline to follow-up with both Gla-300 (from 56.5 U/day to 59.2 U/day, n = 346) and Gla-100 (from 54.7 U/day to 55.0 U/day, n = 1,095), with no statistical difference in percent change in DACON between cohorts (9.7% vs 7.3% for Gla-100; P = 0.467) (Figure 3).
For the subset of patients with available A1C measures, both cohorts showed comparable mean A1C at baseline and follow-up (Figure 4).

LIMITATIONS
– This is a retrospective database analytic; no causal relationship can be established.
– Selection bias is a limitation of claims database analyses.
– Prescription claims were used for the study, but prescription orders do not necessarily mean the medication was taken as directed.
– The 2 cohorts were matched using PSM (based on demographics and clinical characteristics) to provide balanced cohorts for the comparison.
– The data reflect the comparison of this population of patients, and may not be representative of all patients with T2D.
– It is not mandatory to report lab information in claims data; as such, only a proportion of patients in the cohorts had A1C data available at baseline and follow-up.
– Missing A1C data may have impacted PSM.
– Temporal data for missing A1C:
 – baseline A1C was matched for those patients with data available
 – other clinical characteristics were balanced.
– Missing A1C data in the follow-up limited the analysis when evaluating A1C reduction.
– Additional analysis on A1C outcome is warranted when sample size permits.

CONCLUSIONS
– In a real-world clinical setting, switching to Gla-300, compared with continuation on Gla-100, was associated with a higher basal insulin dose in patients with T2D, similar changes in DACON and A1C were observed between cohorts.
– Patients switching to Gla-300 and those continuing on Gla-100 up-titrated their dose by only 7–9%, with mean A1C remaining elevated in both, confirming the need for more appropriate titration for patients with T2D.
– Sample size permitting, additional analyses on A1C outcomes and hypoglycaemia rates would provide additional valuable information from this real-world assessment.

REFERENCES

ACKNOWLEDGEMENTS
This poster presented previously at the HFMA Management Care Specialty Symposium Annual Meeting, 27–28 March 2017; Denver, CO, USA. This study was funded by Sanofi US, Inc. The authors received no邦财政補助の基礎研究においては、研究倫理の基盤を設け、研究倫理に対する理解を深めるために、博士論文に先立つ学術討論会においても、博士論文を指導するための京都大学医学部附属病院で開催された研究倫理の講演会に出席した。